Effect of Oil Temperature on Shrouded Meshed Spur Gear Windage Power Loss

Irebert Delgado (NASA) and Michael Hurrell (HX5 Sierra)

Proceedings of the ASME 2017 IDETC/CIE
Cleveland, Ohio, USA, Aug. 6-9, 2017

Windage power loss (WPL)

- Drag on gear tooth in transmitting load.
- Viscous drag on gear faces
- Air/Oil impingement on tooth surface (inertia effects)
- Significant at greater than 10,000 ft./min. (51 m/s)
- Gearbox efficiency losses
- Reduced rotorcraft performance (i.e. payload, range)

Ref:

Hill, Matthew J., et al. "CFD analysis of gear windage losses: Validation and parametric aerodynamic studies." Journal of Fluids Engineering 133.3 (2011): 031103.

Shrouded Spur Gear WPL Work

- (1984) Dawson: "Windage Loss in Larger High-Speed Gears"
 - single spur gears, air
 - reduction in WPL with axial and radial shrouding
- (1998) Lord: "An Experimental Investigation of Geometric and Oil Flow Effects on Gear Windage and Meshing Losses"
 - single and meshed spur gears, shrouding, air/oil
 - decrease in WPL with increasing oil temp., increase in WPL with increasing oil flow
- (2011) Combined Analysis & Experimental Validation
 - single spur gear analyses, shrouding
 - Hill: "CFD Analysis of Gear Windage Losses...."
 - Handschuh: "Initial Expts. of High-Speed Drive Sys. Windage Losses"
- (2017) Delgado and Hurrell: "Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss"
 - 7x to 12x increase in WPL for meshed spur gears compared to single spur gears
 - Explore WPL sensitivity to oil flow rate and oil temperature

Focus of this work

- Obtain WPL experimental on meshed spur gears
 - Oil inlet temperatures: 100°F (38°C), 125°F (52°C), 160°F (71°C), 180°F (82°C)
 - Constant oil pressure
 - 4 shroud configurations
- Compare with literature
 - · Single vs Meshed
 - Unshrouded vs Shrouded
- Identify WPL trends, if any
- Outline additional research

Gear Information

Gear Parameter	Drive-side	Driven-side		
Number of teeth	44	52		
Pitch / module, 1/in. (mm)	4 (6.35)			
Face Width in. (mm)	1.12 (28.4)	1.12 (28.4)		
Pitch Diameter, in. (mm)	11.0 (279.4)	13.0 (330.2)		
Pressure Angle, deg.	25			
Outside Diameter, in. (mm)	11.49 (291.85)	13.49 (342.65)		
Material	Steel-SAE 5150H			

Shroud Information

	Axial Clearance	Radial Clearance		
Shroud Config.	Per side [inches] (mm)	Drive [inches] (mm)	Driven [inches] (mm)	
(U) Unshrouded w/o clam- shell housing	2.25 (57.15)	2.5 (63.5)	1.0 (25.4)	
(CS) Unshrouded w/ clam-shell housing	1.5	0.82	0.82	
	(38.1)	(20.83)	(20.83)	
(C36)	1.2	0.66	0.66	
shrouded	(30.5)	(16.76)	(16.76)	
(C1)	0.039	0.039	0.039	
shrouded	(1.00)	(1.00)	(1.00)	

Continued - Shrouding

NASA WPL Test Rig

- dc motor:150 hp (112 kW)
- speed-up gearbox:1:5.17 ratio
- Eddy-current brake:
 73.8 ft.-lb. (100 N-m) at
 2865 rpm (300 rad./sec.)
- torque-meter:2,000 in-lbs (226 N-m)
- Into-mesh lubrication
- Measurements shaft speed gear fling-off temperature gear mesh oil flow oil inlet/exit temperature

WPL Test

 Spin-down at 10,000 rpm (1047 rad/s)

(i.e. disengage drive motor, clutches, dynamometer)

10,000 rpm (1047 rad/s) in 2000 rpm increments every 100 seconds

Record speed vs time

Repeat 2x for 3 cycles total.

Oil In:

100°F (38°C), 125°F (52°C), 160°F (71°C), 180°F (82°C)

Shroud Config

U, CS, C36, C1

WPL Calculation

- WPL = P_{total} P_{gear mesh} P_{driveline losses}
- $P_{total} = (\tau_{system}[ft-lbf] \times N[rpm]) \div 5252$

$$\tau_{\text{system}} = I_{\text{system}} \times \alpha_{\text{system}}$$

I_{system} (equivalent inertia for meshed spur gears)

 α_{system} via experiment

- P_{gear mesh} (estimated via NASA TP 1622, minimal, 1%)
- $P_{\text{driveline losses}} = (\tau_{\text{driveline}}[\text{ft-lbf}] \times N[\text{rpm}]) \div 5252$

$$\tau_{\text{driveline}} = I_{\text{driveline}} \times \alpha_{\text{driveline}}$$

I_{driveline} (curved rail method by Genta)

 $\alpha_{\text{driveline}}$ via experiment

WPL variation with increased oil temp.

- WPL unchanged with increased oil inlet temperature
- oil flow increased with temperature:
 0.73 gpm (2.76 lpm),
 0.90 gpm (3.41 lpm),
 0.97 gpm (3.67 lpm),
 1.05 gpm (3.97 lpm)
- Indicative of WPL sensitivity to oil flow
- WPL unchanged for CS, C36, C1 configs.

WPL variation w/shroud configuration

- Increase in WPL of ~10x (single vs. meshed)
- More than double
- Possible WPL insensitivity to shrouding (i.e. C36 vs C1) at surface speeds tested

Brg. temp. variation: U configuration

	Input Inboard	Input Outboard			Output Inboard		Output Outboard	
0	T100:IPIB		T100:IPOB	\Diamond	T100:OPIB	Δ	T100:OPOB	
	T125:IPIB		T125:IPOB	\	T125:OPIB		T125:OPOB	
	T160:IPIB		T160:IPOB	♦	T160:OPIB		T160:OPOB	
	T180:IPIB		T180:IPOB	•	T180:OPIB		T180:OPOB	

Brg. temp. variation: C1 configuration

	Input Input Inboard Outboard			Output Inboard		Output Outboard	
0	T100:IPIB		T100:IPOB	\Diamond	T100:OPIB	Δ	T100:OPOB
	T125:IPIB		T125:IPOB	\	T125:OPIB		T125:OPOB
	T160:IPIB		T160:IPOB	•	T160:OPIB		T160:OPOB
	T180:IPIB		T180:IPOB	•	T180:OPIB		T180:OPOB

Gear fling-off (GFO) temp. variation

- GFO highest with C1 config.
- 40-50°F (20-30°C) difference at 28,000 ft./min. (142 m/s)
- Nearly identical GFO temps. for C36, CS, and U configurations
- Close clearance shrouds may increase local heating to gear

Summary Points

- At controlled oil pressure at tested oil inlet temperatures:
 - WPL data were identical for the U and CS shroud configurations.
 - WPL data were identical for the C36 and C1 shroud configurations
 - WPL data (C36 & C1) less than (U & CS) shroud configurations.
 - Potential insensitivity of WPL to shrouding (C36 vs C1) for surface speeds tested
- Shroud effectiveness may be reduced if oil temperatures and oil flows are not controlled.
- Shrouding appears to <u>limit conductive and convective heat transfer</u> to the surrounding structure
 - could potentially be used to limit localized heating to the vicinity of the rotating gears.
 - · Increased heating to gear (i.e. GFO results) needs to be accounted for
- Estimates of power savings for optimal rotorcraft shrouding should always be stated, or qualified, for a given temperature and lube flow rate. The study presented herein highlights the importance of these parameters on the effectiveness of a given shroud configuration in reducing gearbox windage losses.

Acknowledgements

- NASA Revolutionary Vertical Lift Technology Project
- Robert F. Handschuh
- Sig Lauge

HX5 Sierra, Technical Test Support

APPENDIX

- Helicopter Performance Chart
- Ref: FAA Helicopter Flying Handbook, Chapter 7.
- Torque required for cruise or level flight, Figure 7.3